
The Designs of RAID with XOR Engines on Disks for Mass Storage
Systems�

Tai-Sheng Chang, Sangyup Shimy, and David H.C. Du
Department of Computer Science, University of Minnesota, Minneapolis, MN 55455

Email: ftchang,dug@cs.umn.edu Phone: +1 612 626-7522 Fax: +1 612 625-0572
y: Department of Computer, Information, and Systems Engineering,

San Jose State University, San Jose CA 95192-0180
Email: sishim@email.sjsu.edu Phone: +1 408 924-4058

Abstract

Recently, the exclusive-or computation capability was added on high performance
disks to provide an alternative way of implementing RAID (Redundant Arrays of In-
dependent Disks). This alternative approach reduces the traffic on the storage channel
and eliminates the XOR computation load on the host or RAID controllers. Therefore,
it may be a better approach than the traditional RAID design to implement RAIDs in
a mass storage arena. In this paper, we propose two new approaches with the XOR
capability on disks to implement RAID systems. Simulation results are also provided.

1 Introduction

There have been a variety of RAID (Redundant Arrays of Independent Disks) systems
proposed to improve I/O performance. It improves I/O performance by increasing concur-
rent accesses to disks. By using extra parity information, the RAID systems also provide
fault tolerance when a disk fails. Data on a failed disk can be reconstructed with data and
parity information from other disks. As a result, it improves data availability. Nonetheless,
the update of data (e.g., write operations) requires extra tasks (exclusive-or computations)
to update on the parity information.

The traditional RAID implementations rely on a centralized device to perform all the
RAID management tasks and the exclusive-or (XOR) computations. Such a centralized
device could be either a RAID controller for hardware RAID or the host CPU for software
RAID systems. (For convenience, we call this traditional approach as the ”host-based
XOR” approach). Since the XOR computation is performed on a centralized device, the
old data and old parity have to be transferred over the storage channel to a host or a RAID
controller when data updates (write operation) or data reconstruction in a case of the disk
failure. It results in not only more data traffic on the storage channel, but also higher
buffer requirements to store all the temporary data. Also, the XOR computation could be
a potential bottleneck with high bandwidth storage channel. In reality, the hardware based

�This work is partially supported by Seagate Technology, Inc.



RAID controllers are expensive and can only connect to a relatively limited number of
disks. On the other hand, the software RAIDs do not perform as well as the hardware based
RAID controllers although they are much cheaper. It is because the XOR computation and
other RAID management functions need to be carried out on the host and will compete
with all the other applications on the system resources such as CPU, host memory, system
bus, and etc.

As an alternative solution to the host-based XOR approach, the XOR computation can
potentially be performed on disk drives. (We call this ”disk-based XOR” approach.) Cur-
rent Seagate Barracuda 9 FC-AL disk drives are indeed capable of supporting XOR SCSI
commands proposed in [1]. With this disk-based XOR approach, XOR computation can
be performed independently on disks. Also the old data and parity blocks do not have to
be transferred to a central device to accomplish the XOR computation. It reduces half of
the data traffic on the storage channel forwrite operations. Therefore, disk-based XOR
seems to be a better solution for supporting a large scale storage systems compared to the
traditional RAID implementations.

In this paper, we investigate the performance of the disk-based XOR approach. We
proposed two new approaches with disk-based XOR. The details are described in Section
2. In Section 3, we will show the simulation results for these two approaches. In Section 4,
we conclude out study and suggest some future works.

2 Disk-based XOR approaches

The new SCSI command proposed in [1] to accomplish disk-based XOR is calledXD
Write Extend(denoted by XDW-EXT). When a disk (target disk) executes an XDW-EXT,
it will read the corresponding old data from the disk. It will then do the exclusive-or
computation on this old data and new data (to be sent from host). It keeps the XOR result
in the buffer and write the new data to the disk. At the same time, the target disk will send
another command calledXP Write(denoted by XPW) to the associate parity disk. When a
parity disk executes such a command, it will read the old parity from the disk. When the
parity disk is ready, the XOR result on the target disk will be sent to the parity disk. After
the new parity is calculated, it will be written to the parity disk.

There are two implementation alternatives to process an XDW-EXT command. The
first is to let the target disk wait for the completion of the operation on the parity disk
before it can process the next command. That is, the target disk will not execute the next
command in its command queue before the current XDW-EXT is completed. This approach
is simpler and needs no other extra function. But it may result in lower disk utilization. The
other approach is to allow the target disk to proceed the next command once the XOR result
of the new and old data has been calculated and the new data has been written to the disk.
This approach allows multiple commands pending on each disk. It would improve the disk
utilization but require some mechanism to protect all the temporary data from overwritten.

Since the disks serve commands independently, a deadlock may also happen with such
XDW-EXT operations with either approach. This is because it needs two disks to complete
its tasks and may cause a deadlock with a circular waiting condition. One major challenge
for implementing RAID with the disk-based XOR approaches is to prevent deadlock from



happening while maintaining acceptable performance. We propose two different deadlock
prevention approaches in this paper. The first approach is to avoid the deadlock condition
by re-arranging the location of the parity blocks. For example, when all the parity blocks
are stored on one disk (RAID-4), the circular-waiting condition will never happen. Our first
approach is based on this observation and the idea of the RAID-5’s parity block distribution
among a group of disks to improve the performance. We partition the disks into several
groups and store all the parity blocks of one group onto another group of disks. We call it
”Grouping” approach. For example, if there aren groups, G1, G2, to Gn, we may store the
parity blocks of group G1 on the disks in group G2. And store the parity blocks of group
G2 on the disks in group G3 and so on. In general, we store the parity blocks of group Gi�1

in group Gi wherei is from 1 to n � 1. Figure 1 shows an example of this approach with
three disks in each group (two disks in Group 1). The advantage of this parity placement
approach is that there is no need for change on disks. Neither the applications nor the disks
require any change. The disadvantage of this approach is that, some disks in the last group
Gn will have lower space utilization. To compensate this problem, we can use less number
of disks in the last group since the last group is exclusively used for parity block in this
approach. The load will be less since there is no additional load from data update on these
disks.

i, j i, j

1,1 1,1

P1,2

P1,3

P1,4

P1,5

P1,6

P1,7

P1,8

P1,9

P2,1

P 2,2

P 2,3

P 2,4

P 2,5

P 2,6

P 2,7

P 2,8

P 2,9

P 3,1

P 3,2

P 3,3

P 3,4

P 3,5

P 3,6

P 3,7

P 3,8

P 3,9

P 4,1

P 4,2

P 4,3

P 4,4

P 4,5

P 4,6

P 4,7

P 4,8

P 4,9

P1,1 2,1 3,1 3,12,1 4,1 4,1

1,2 1,2 2,2 2,2

: Data block in stripe j of group i : Parity block for 

Group 2 Group 3 Group 4 Group 5Group 1

has pairty blocks in has pairty blocks in has pairty blocks in has pairty blocks in

P i, j

Figure 1: An example of Grouping Approach with 3 disks in each group

In the second approach (we call it the XPWF approach), we resolve deadlock by giving
the XPW a higher priority and also ensure that the XPW will be completed once it is sent
to the parity disk. The higher priority can be ensured by putting the XPW command at
the head of the command queue on the parity disk. To ensure the XPW can be completed,
each disk sends the associated XPW first when it starts an XDW-EXT command. After
the XPW is sent to the parity disk successfully, the target disk starts processing the asso-
ciate data update and XOR calculation (We call this portion of XDW-EXT command to be
XDW). If an XPW from another disk arrives while a disk is trying to send out an XPW,
then the disk with the arriving XPW should abort its current XDW-EXT command and
stop the intent to send the associate XPW. The aborted XDW-EXT should be put back to
the command queue. Figure 2 shows a control flow of this approach. Since the XPW has



not been sent yet, the XDW-EXT has not been processed yet. And the overhead of aborting
this command can be minimized since no data has been read and processed at the time of
abortion. This XPWF approach works if the transmissions on the storage channel are seri-
alized. That is, only one transmission is allowed at any time. Both SCSI and FC-AL belong
to this category. In the case when multiple concurrent transmissions are allowed, such as
in SSA (Serial Storage Architecture [3]), some modifications to provide acknowledgments
from the parity disk are necessary. The advantage of this approach is that no modification
on the applications is required. Also, we can use RAID-5 or whatever parity placement
approaches. The disadvantage is that it requires some modification on the protocol of ex-
ecuting an XDW-EXT command. Also this approach is considered pessimistic because it
does not necessarily result in a deadlock by sending out an XPW while there is an XPW
from other disks waiting for service in its command queue.

receive

XPW sent

XDW completed

XDW-ext

XPW completed

No

Yes

Yes No (XPW)

XPW completed

receive XPW

receive XPW

command Q?
command in

Another

New command
is XDW-ext?

send XPW
Aribitrate to

completion of XPW
Waiting for

XDW-ext
Abort

Idle

Executing XDW

Executing XPW

Figure 2: Control flow for XPWF Approach

3 Simulation Results

In this section, we will show the simulation results for the Grouping and XPWF ap-
proaches we proposed in previous section. The simulation model is based on the FC-AL
model used in [3]. We keep a fixed number of outstanding commands on a host. The
number is set to eight times the number of disks attached. That is, each disk has eight
commands on average. It represents a case when the disks are highly loaded (each disk is
either waiting for XPW to complete or reading/writing data).

The simulation results are shown in Figure 3. The disks were assumed to wait for the
XPW’s completion before it can process the next command. We also compare the results
when multiple outstanding commands are allowed on each disk with the RAID-5 parity
block placement. The results show that before the FC-AL link starts to be saturated (� 40

disks in Figure 3), both approaches achieved as much as two thirds of the throughput of the
method allowing multiple concurrent commands on each disk. This is because in the single
command case, the disks have to wait for its parity update before it can process the next
command. Therefore, disk utilization is lower. When the number of XPW’s are the same as
that of XDW-EXT on a disk, the disk utilization will be less than 67%. This is because that



each XDW-EXT needs to wait for the completion of its XPW. That is, the disk will be idle
at least for the period of time executing an XPW. Assuming data and parity update need
the same amount of time on average and the time is one unit, the disks will be idle for at
least one time unit (waiting for XPW to complete) for every three units (each XDW-EXT
needs 2 units and each XPW needs one unit). That is why the upper bound for the disk
utilization is two thirds. When the delay on the loop becomes longer, the disks utilization
will be lower.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Number of Disks
(a)

Multiple
Grouping
XPWFirst

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 c
om

m
an

d 
la

te
nc

y 
tim

e 
(m

se
c)

Number of Disks
(b)

XPWFirst
Grouping

Multiple

Figure 3: (a): The aggregate throughput comparison; (b): Access latency comparison

Figure 3(b) shows the average access latency for each request. The latency time include
the command waiting time in the disk command queue, the disk service time and the data
transfer time on the loop.

4 Conclusions

In this paper, we have proposed two different approaches to implement the Disk-based
XOR. The simulation results showed that the Grouping approach is slightly better than
the XPWF approach. Both approaches achieved about two thirds of the throughput of the
multiple outstanding command approach.

In this paper, we have proposed two approaches to implement a RAID system by taking
advantage of the XOR capability on disks. Further studies are necessary to investigate its
performance with largewrites, when rebuilding a failed disk, and its buffer requirement.

References

[1] Gerry Houlder, Jay Elrod, and Mike Miller,”XOR Commands on SCSI Disk Drives”,
X3T10/94-111r9.

[2] Sangyup Shim, Yuewei Wang, Jenwei Hsieh, Tai-Sheng Chang, and David H.C. Du,
”Efficient Implementation of RAID-5 Using Disk Based Read Modify Writes”Tech-
nical Report, Department of Computer Science, University of Minnesota, 1996.

[3] David H.C. Du, Jenwei Hsieh, Tai-Sheng Chang, Yuewei Wang and Simon Shim,
”Performance Study of Serial Storage Architecture (SSA) and Fibre Channel - Arbi-
trated Loop (FC-AL)”,to appear in IEEE Parallel and Distributed Technology


